
von Willebrand Disease - Past, Present and Future

15 Sept 2018

Elina Lehtinen, Adj. Prof. Coagulation Disorders Unit Helsinki University Hospital Hematology, Comprehensive Cancer Center

Hjördis Sundblom

- In 1924 5-yo Hjördis from island of Föglö, part of the Åland Islands, was brought to see a doctor in Helsinki due to unusual bleeding symptoms.
- She suffered from recurrent mucous membrane bleeds.
- At age 3 she bled from her upper lip wound for 3 days and was in the hospital for 10 weeks.
- Hjördis was ninth of 11 children in the family.
 Three of her younger sisters had died from bleeding and 4 others had bleeding symptoms.
- Many family memebers from both father's and mother's side had bleeding symptoms.
- She was found to be otherwise a healthy and clever girl in good nutritional status.

Erik Adolf von Willebrand

- · Finnish doctor
- Born 1870 in Vaasa
- Graduated highschool in 1890
- Studied in the University of Helsinki
- Spent summers of1894 ja 1895 on the Åland Islands as a spa doctor
- 1897, after graduation, workd as an assistant doctor at the Diaconess Hospital in Helsinki

- Publication in 1926 Erik von Willebrand:"Hereditär pseudohemofili"
- Finska Läkaresällskapets Handlingar

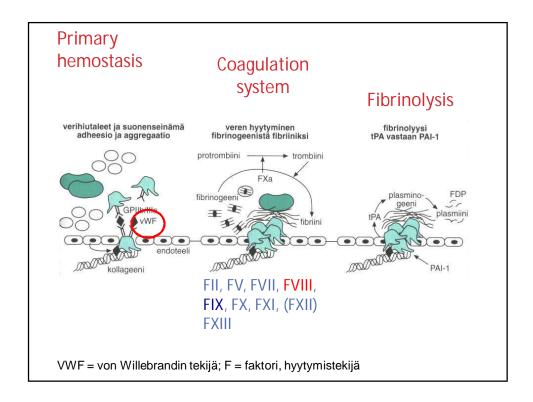
• Hjördis kuoli 14 vuotiaan elämänsä 4. kuukautisiin

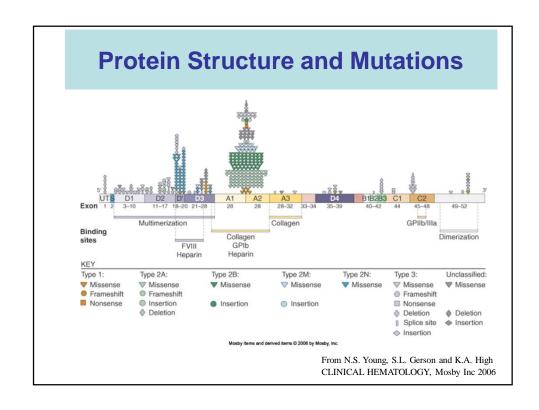
1957 **Inga Marie Nilsson** from Sweden with her research group visited the Åland Islands to study 15 members of the original family

→She discovered that bleedings were due to a missing plasma factor which was present in both hemophilia A patients and normal individuals

1971 Americans Zimmermann and Stites found FVIII associated protein, wich was named von Willebrandin factor

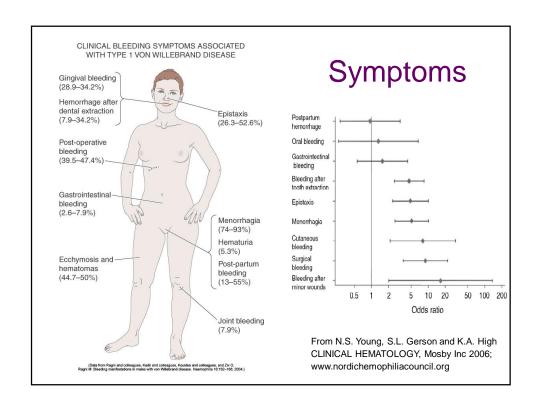
1985 von Willebrand disease gene was discovered from chromosome 12

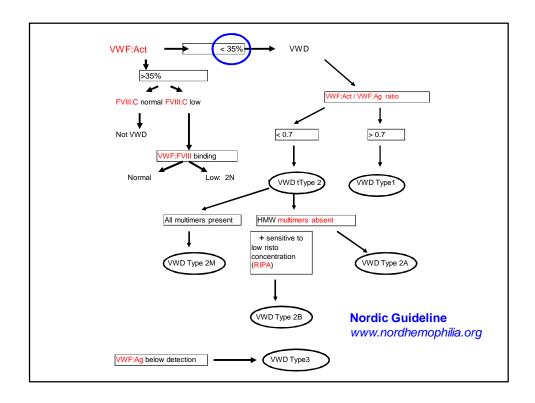

Von Willebrand Disease


- Incidence ~1:100
 - Rodeghiero, Blood 1987; Werner J Pediatr 1993
- Symptomatic ~1: 1000
 - Bowman JTH 2010; Bowman Ped Blood and Cancer 2010
- 80% Type 1 dominant inheritance
 - VWF levels can vary
 - Symptoms can vary within the same family

Nordic Guidelines

(www.nordhemophilia.org)


- •Diagnostic criteria
- Bleeding symptoms
- •Laboratory measurements:
 - VWF:RCo / VWF-Act
 - VWF:CB
 - VWF:Ag
 - FVIII:C
 - VWF subtypes (VWF:Ag, RIPA, Multimers)
 - ABO blood group: type O appr 30% lower levels
- •Reduced platelet function, suggestive of VWD
- •Platelet number normal (except 2B)



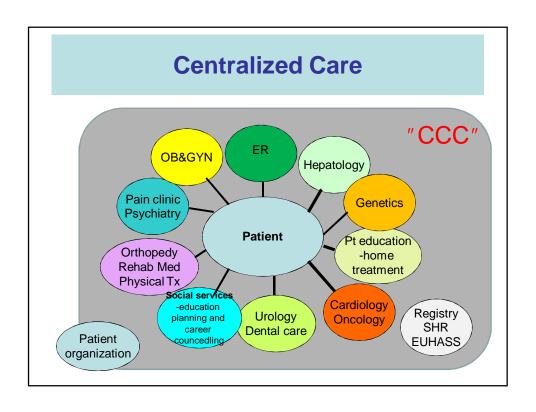
Types of VWD

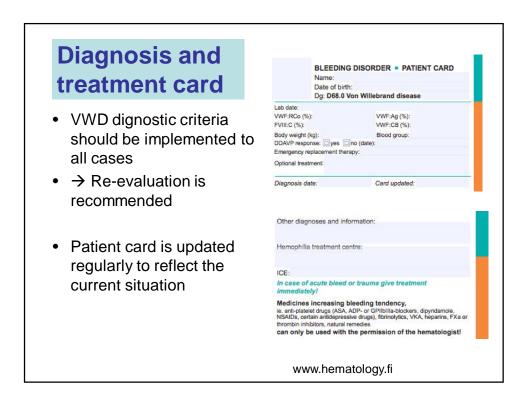
VWD Type	Description	Inheritance	Prevalence	
1	Partial VWF deficiency Mild to moderate	Autosomal dominant	70–80 %	
2A	VWF dysfunction Moderate to severe	Autosomal dominant	10–15 %	
2B	B VWF dysfunction Increased GPlb-recepor binding of VWF Thrombocytopenia Moderate to severe Autosomal dominant		~ 5 %	
2M	VWF dysfunction Normal multimer distribution	Autosomal dominant	Rare	
2N	VWF dysfunction Decreased binding to FVIII Phenotype as in mild hemophilia A Autosomal dominant		Rare	
3	Complete VWF deficiency Autosomal severe recessive		Rare	

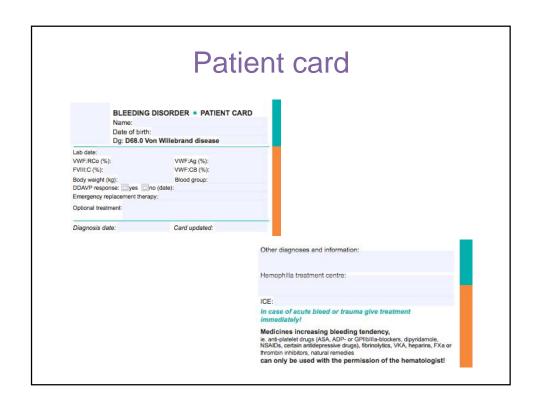
VWD – Diagnostic Challenge

- Criteria:
 - Low VWF-levels (<35-40%)
 - Bleeding symptoms
 - Family history
- Other influences:
 - VWF levels and bleeding symptoms correlate the best when VWF <20-30-35%
 - Age, stress, hormonal factors, medications, infection, inflammation, ABO blood group and other factors influence
 - Skin and mucous membrane bleeds also common with healthy people

Pre-analytical issues


Lab sampling


- · Preferably after resing
- At rest
- · Excersice, stress, infection, pregnancy recognized


Samples

- Carfeful centrifugation
- Should be frozen at -70C, if not immediately analyzed.
- Plasma samoles transported frozen
- No need to time with menstruation

Spectrum of Bleeding Disorders Healthy _ Patient Hemofilia Platelet function Bleeding VWD Type 1, 2 ja 3 tendency Possible/Probable VWD BSS, Glanzmann... Carriers Clinical dg => goal is to find the ones with persistent disease / tendency Lab dg => goal is to find the ones with abnormal results ⇒ Interpretation of the results ⇒ Correct diagnosis ⇒ Directed care ⇒ Treatment center and patient are indiaremed L. J-к

Treatment

- Replacement ot the missing clotting factor intravenously
 - 'On demand'
- Prophylactically 2-3 per week
 DDAVP / Octostim®
- Antifibrinolytic therapy
 - Tranexamic acid (Cyclokapron ® / Caprilon ®
- Local measures
 - Cooling
 - Immobilization
 - Rest
 - Pain medication

Octostim® intranasal spray

Indication: Treatment and prevention of bleeds In VWD and mild hemophilia A when response is known

Releases FVIII and VWF from endothelial cells to increase levels.

Response testing recommended -> 2-3 x increase Is considered adequate.

Also corrects platelet function.

vWD Type	Treatment							
	Minor Bleeding or Trauma*	Low-Risk Procedure ⁺	Major Bleeding or Trauma [†]	High-Risk Surgery ^s	Menorrhagia			
Type 1	DDAVP	DDAVP	VWF concentrate (100% correction)	VWF concentrate (100% correction)	Estrogens DDAVP Antifibrinolytic			
Type 2A	DDAVP VWF concentrate (50% correction)	DDAVP VWF concentrate	VWF concentrate (100% correction)	VWF concentrate (100% correction)	Estrogens DDAVP Antifibrinolytic			
Type 2B	VWF concentrate (50% correction)	VWF concentrate	VWF concentrate (100% correction) Platelets	VWF concentrate (100% correction) Platelets	Estrogens Antifibrinolytic			
Type 2M	DDAVP VWF concentrate (50% correction)	DDAVP VWF concentrate	VWF concentrate (100% correction)	VWF concentrate (100% correction)	Estrogens DDAVP Antifibrinolytic			
Type 2N	VWF concentrate (50% correction)	VWF concentrate	VWF concentrate (100% correction)	VWF concentrate (100% correction)	Estrogens Antifibrinolytic VWF concentrate			
Туре 3	VWF concentrate (100% correction)	VWF concentrate	VWF concentrate (100% correction)	VWF concentrate (100% correction)	VWF concentrate Antifibrinolytic			

Table 15. Initial Dosing Recommendations for VWF Concentrate Replacement for Prevention	1
or Management of Bleeding	

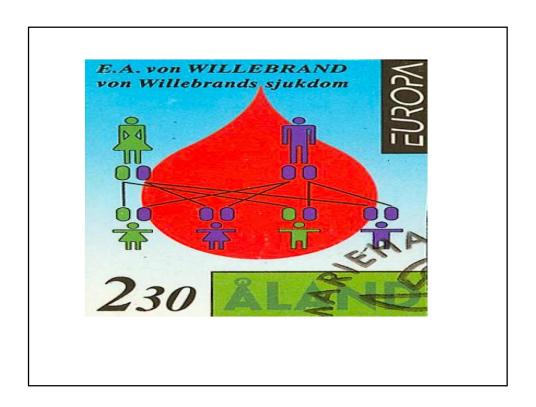
Major sı	urgery/bleeding				
Loading dose:*	40-60 U/kg				
Maintenance dose:	20-40 U/kg every 8 to 24 hours				
Monitoring:	VWF:RCo and FVIII trough and peak, at least daily				
Therapeutic goal:	Trough VWF:RCo and FVIII >50 IU/dL for 7–14 days				
Safety parameter:	Do not exceed VWF:RCo 200 IU/dL or FVIII 250- 300 IU/dL				
May alternate with DDAVP for latter part of treatment					
Minor st	urgery/bleeding				
Loading dose:* 30-60 U/kg					
Maintenance dose:	20-40 U/kg every 12 to 48 hours				
Monitoring:	VWF:RCo and FVIII trough and peak, at least once				
Therapeutic goal:	Trough VWF:RCo and FVIII >50 IU/dL for 3-5 days				
Safety parameter:	Do not exceed VWF:RCo 200 IU/dL or FVIII 250- 300 IU/dL				
May alternate with DDAVP for latter part of treatment					

http://www.nhlbi.nih.gov/guidelines/vwd/4_managementofvwd.htm

VWF

- HAEMATE® 1000* IU (10ml) CSL Behring
 - plasma FVIII 1000IU /VWF 2400 IU
- WILATE® 450* IU (5ml) 900* IU (10 ml)
 Octapharma
 - plasma FVIII/VWF 1:1
- WILFACTIN® 1000 IU (10 ml) LFB BIOMEDICAMENTS / Sanguin
 - plasma VWF
- Recombinant VWF in clinical research

Towards Individualized Care


Summary of the major current VWF/FVIII concentrates: similarities and differences.

Concentrate	Biostate ®a	Haemate P [®] /Humate- P [®] <u>b</u>	Alphanate ^{®c}	Fanhdi ^{®d}	Immunate [®] e	Wilate [®] f	Wilfactin®g	Factor 8Y®h	Range
HMW VWF (% of NHP)	86	93.6	29.3	31.7	3.9	N/A	N/A	32.1	4-94
VWF:RCo/VWF:Ag	0.73-0.99	0.91	0.43	0.69	0.38	0.9-1.0	0.95	0.6	0.4– 1.0
VWF:CB/VWF:Ag	0.72-0.95	0.89	0.49	0.47	0.21	N/A	N/A	N/A	0.5- 1.0
VWF:RCo/FVIII:C	2.00	2.88	0.82	1.29	0.67	1.0	>10	1.8	0.7- >10
VWF:CB/FVIII:C	2.53	2.28	0.68	0.80	0.16	N/A	N/A	N/A	0.2- 2.5

Blood Transfus. 2016 May; 14(3): 262-276

VWD - Future

- Development in treatments
 - recombinant VWF (Vonvendi)
- Genetic diagnosis
- Laboratory assay development
- VWF interactions in blood and tissues

